In matematica il concetto di infinito procura spesso grandi dubbi esattamente come la più grande poesia di ogni tempo che il genio di Leopardi ci ha regalato:
« Sempre caro mi fu quest’ermo colle,
e questa siepe, che da tanta parte
dell’ultimo orizzonte il guardo esclude.
Ma sedendo e mirando, interminati
spazi di là da quella, e sovrumani
silenzi, e profondissima quïete
io nel pensier mi fingo, ove per poco
il cor non si spaura. E come il vento
odo stormir tra queste piante, io quello
infinito silenzio a questa voce
vo comparando: e mi sovvien l’eterno,
e le morte stagioni, e la presente
e viva, e il suon di lei. Così tra questa
immensità s’annega il pensier mio:
e il naufragar m’è dolce in questo mare. »
Tornando però nell’ambito matematico l’infinito è un concetto collegato a quello di asintoto. L’asintoto è una retta immaginaria a cui la funzione cerca di avvicinarsi ma a cui non arriva mai.
E’ come il concetto di velocità della luce: ad essa non ci si può mai arrivare ma solo tendere in quanto per arrivarci bisognerebbe avere una massa infinitamente piccola se non nulla; tale velocità infatti è raggiungibile solo dall’energia!


![Rendered by QuickLaTeX.com tanalpha=cfrac{sinalpha}{cosalpha}=cfrac{sinleft(cfrac[l]{pi}{4}-betaright)}{cosleft(cfrac{pi}{4}-betaright)}=cfrac{sincfrac{pi}{4}cosbeta-sinbetacoscfrac{pi}{4}}{coscfrac{pi}{4}cosbeta+sincfrac{pi}{4}sinbeta}=cfrac{1}{2}](https://www.whymatematica.com/wp-content/ql-cache/quicklatex.com-a10f0ac6db51364ed3da397a95eb06ba_l3.png)







Una volta che si riesce a calcolare la derivata prima di una funzione si può cominciare ad intuire come potrà essere il suo grafico. In particolare siccome la derivata prima fornisce il valore dell’inclinazione della curva tangente si può capire che quando essa si annulla la relativa retta è orizzontale.

