Dominio di una funzione

img_5536_1251034607La definizione formale di dominio di una funzione è:

insieme dei valori possibili che la variabile indipendente x può assumere, in modo che la funzione sia definita in tali valori.

In molti anni che insegno ho adottato questa definizione:

insieme dei valori di x per i quali posso DISEGNARE la funzione.

Questa definizione, indubbiamente molto spartana, mi ha consentito di poter far capire perché dal dominio devono essere esclusi quei punti in cui la funzione presenta un asintoto.

Infatti se si pensa, l’infinito non si può disegnare e quando una funzione tende all’infinito per un particolare punto, non può essere disegnata per cui tale punto deve essere  escluso dal dominio stesso!

Ecco i domini delle funzioni più comuni:

Funzione polinomiale

La retta è una funzione polinomiale y=3x+5 il cui grafico è:

retta

si nota dal grafico che il disegno esiste per ogni valore di x e si scrive:

D=\left \{ \forall x\in \mathbb{R} \right \}

La parabola è una funzione polinomiale:

y=x^{2}-5x+6

il cui grafico è:

parabolaed il dominio è:

D=\left \{ \forall x\in \mathbb{R} \right \}

Generalizzando

tutte le funzioni del tipo:

f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x^{1}+a_{0}

hanno dominio:

D=\left \{ \forall x\in \mathbb{R} \right \}

Funzione frazionaria

Ecco il grafico di una funzione frazionaria:grafico 1si noti subito che nell’intorno del numero 3 la funzione si avvicina sempre più al 3 (asintoto verticale) senza mai toccarlo.

La funzione frazionaria ha al numeratore un polinomio ed al denominatore un altro polinomio.

Il grafico precedente ha equazione:

y=\cfrac{x-2}{x-3}

e per determinare il dominio devo escludere i valori che annullano il denominatore ossia risolvere questa diseguaglianza:

x-3\neq 0

ossia

x\neq 3

il dominio diventa:

D=\left \{ \forall x\in \mathbb{R}|x\neq 3\right \}

generalizzando:

Si devono trovare i valori che annullano il denominatore.

Se

y=\cfrac{a_{n}x^{x}+...+a_{0}}{(x-x_{1})\cdot (x-x_{2})\cdot ...\cdot (x-x_{n})}

i valori che annullano il denominatore sono:

  x_{1},x^{2},...,x_{n}

il dominio diventa quindi:

D=\left \{ \forall x\in \mathbb{R}|x\neq x_{1},x\neq x_{2},...,x\neq x_{n}\right \}

Funzione irrazionale

Ecco la rappresentazione sul piano cartesiano di una funzione irrazionale:

irrazionaleessa ha come equazione:

y=\sqrt{x-1}

per studiare il dominio bisogna porre l’argomento della radice quadrata sempre strettamente maggiore di zero.

Ossia

x-1\geq 0

Il dominio diventa:

D=\left \{ \forall x\in \mathbb{R}|x \geq 1\right \}

generalizzando; data la funzione:

y=\sqrt[n]{A(x)}

con n pari, bisogna studiare il segno dell’argomento ossia porre:

A(x)\geqslant 0

il dominio diventa quindi:

D=\left \{ \forall x\in \mathbb{R}|A(x) \geq 0\right \}

Funzione esponenziale

Ecco la rappresentazione grafica di una funzione esponenziale:

esponenzialela cui equazione è:

y=e^{x}

il cui dominio coincide con le funzioni polinomiali ossia:

D=\left \{ \forall x\in \mathbb{R} \right \}

generalizzando:

y=a^{A(x)} con

A(x) una funzione polinomiale

Si ha quindi sempre come dominio:

D=\left \{ \forall x\in \mathbb{R} \right \}

Funzione logaritmica

Ecco il grafico:

logaritmicche ha equazione:

y=\ln (x+1)

e per determinare il suo dominio devo prendere l’argomento e porlo maggiore di 0:

x+1>0\Rightarrow x>-1

Quindi il dominio si scrive:

D=\left \{ \forall x\in \mathbb{R}|x>-1\right \}

generalizzando:

y=\ln (A(x))

bisogna porre sempre l’argomento maggiore di zero (non anche uguale a zero perché in 0 il logaritmo ha un asintoto verticale).

D=\left \{ \forall x\in \mathbb{R}|A(x)>0\right \}

Combinazione delle funzioni precedenti

Per studiare il dominio dato dalla combinazione di una delle precedenti funzioni bisogna impostare un sistema di disequazioni o diseguaglianze e come soluzione si ha quell’insieme di valori che vanno bene a tutti.

 

 

 

 

 

 

Pubblicato in Senza categoria | Lascia un commento

Applicare i sistemi ad un problema

untitledQuesto problema è stato tratto da La settimana Enigmistica del 24 dicembre 2015 quesito 7063 e dato alla verifica sui sistemi d’equazione alle classi di seconda superiore il 13 gennaio 2016.

“Biagio, Fulvio e Giacomo sono tre studenti universitari di matematica. Per raggranellare qualche soldo, nel mese di dicembre, si sono ritrovati a lavorare in un grande magazzino, nel reparto degli addobbi natalizi. Forti della loro padronanza dei numeri, a volte si divertivano a mettere qualcuno in difficoltà. Così, a un signore troppo pignolo,

  • Biagio ha risposto: “Si, 7 palline e 5 stelle costano come 6 angioletti”
  • Fulvio ha rincarato: “Oppure, se vuole, 4 palline più 9 angioletti hanno lo stesso prezzo di 5 stelle”.
  • Giacomo interviene: “E 6 angioletti e 3 stelle valgono come 4 palline

Ma quando il cliente, frastornato, è giunto alla cassa, si è scoperto che uno di loro aveva mentito mentre gli altri due avevano dato informazioni corrette.

Chi ha dato informazioni errate?

Soluzione:

Si imposta un sistema di equazione con

p palline

a angioletti

s stelle

\left\{ \begin{array}{c} 7p+5s=6a \\ 4p+9a=5s \\ 6a+3s=4p \end{array} \right.

Adesso li ordino ed ho:

\left\{ \begin{array}{c} 7p+5s-6a=0 \\ 4p-5s+9a=0 \\ -4p +3s +6a= 0\end{array} \right.

Suppongo che le prime due ossia Biagio e Fulvio abbiano detto la verità e le sommo:

\cfrac{+\left\{ \begin{array}{c} 7p+5s-6a=0 \\ 4p-5s+9a=0 \end{array} \right.}{11p+//+3a=0}

che risolta dà:

p=-\cfrac{3}{11}a

che è impossibile in quanto le palline non possono dare un costo negativo.

Per cui o Biagio o Fulvio ha detto il falso!

Adesso sommo Fulvio e Giacomo

\cfrac{+\left\{ \begin{array}{c} 4p-5s+9a=0 \\ -4p+3s+6a=0 \end{array} \right.}{//-2s+15a=0}

ossia

s=\cfrac{15}{2}a

che è possibile.

Per cui chi dice il falso è Biagio.

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – Quiz geometria

Sergey Tyukanov

Sergey Tyukanov

[WpProQuiz 8]

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – Quiz disequazioni

Arte-Pinturas-Surrealismo-Salvador-Dali-13[WpProQuiz 7]

Pubblicato in Senza categoria | Contrassegnato | Lascia un commento

INVALSI – ON LINE – Quiz percentuali, statistica, probabilità

thELPTOAWT[WpProQuiz 6]

Pubblicato in Senza categoria | 2 commenti

Proprietà dei logaritmi

  1. kandinsky_black-violet\log_{a}a=1
  2. \log_{a}1=0
  3. \log_{a}b+\log _{a}c=\log _{a}(b\cdot c)
  4. \log_{a}b-\log _{a}c=\log _{a}\left ( \cfrac{b}{c} \right )
  5. b\log _{a}c=\log _{a}c^{b}
  6. \log _{a}b=\cfrac{\log _{c}b}{\log _{c}a}

Esempi sulle precedenti proprietà

  1. \log _{5}5=1
  2. \log _{5}1=0
  3. \log _{3}5+\log _{3}8=\log_{3}40
  4. \log _{3}10+\log _{3}2=\log_{3}5
  5. 4\log _{3}2=\log_{3}2^{4}=\log _{3}16
  6. \log _{5}3=\cfrac{\log _{10}3}{\log _{10}5}
Pubblicato in Senza categoria | Lascia un commento

Esercizi sulla determinazione dei massimi e minimi

  1. CRI_151474Determinare il massimo ed il minimo assoluti della funzione:

y=2x^{3}-15x^{2}+24x

nell’intervallo chiuso

\left [ 1;5 \right ]

soluzione

2. Determinare il massimo ed il minimo assoluti della funzione

f(x)=\cfrac{e^{-x}}{x}

nell’intervallo

\left [ -2;-\cfrac{1}{2} \right ]

soluzione

3. Determinare il massimo ed il minimo assoluti della funzione:

f(x)=x\cdot \ln x

nell’intervallo:

\left [ \cfrac{1}{e^{2}};e \right ]

soluzione

Pubblicato in Senza categoria | Lascia un commento

INVALSI ON LINE – Quiz di logica e calcoli

th9AD4KUZ9[WpProQuiz 5]

Pubblicato in Senza categoria | Lascia un commento

Problema su una funzione logaritmica parametrica con relativa disequazione

Data la funzione:

f(x)=a\cdot \log_{2} \left ( x+b \right )

 

a) calcola a e b sapendo che il suo grafico passa per l’origine e interseca la retta di equazione y=4 nel punto di ascissa 3.

b) rappresenta il grafico di f(x) per i valori di a e b trovati

c) risolvi analiticamente e graficamente la disequazione:

2\cdot \log _{2}\left ( x+1 \right )\geq 3-\log _{\frac{1}{2}}x

 

Sviluppo.

a) Passando per l’origine deve essere soddisfatta la

(1) a\cdot \log _{2}b=0

e affermare che interseca una retta in un particolare punto significa che quel punto appartiene  alla curva per cui deve valere anche questa relazione:

(2) a\cdot \log _{2}\left ( 3+b \right )=4

analizzando la (1)

a\neq 0

perché se così non fosse la funzione di partenza degenerebbe in un punto coincidente con l’origine.

Risolvo l’equazione:

\log _{2}b=0

che equivale a scrivere (partendo dalla definizione stessa di logaritmo)

2^{0}=b

che fornisce il valore

b=1.

Sostituendo adesso il valore trovato nella (2) si deve risolvere l’equazione:

a\cdot \log _{2}4=4

ma

\log _{2}4=2.

2a=4.

a=2.

la funzione di partenza diventa:

f(x)=2\cdot \log_{2} \left ( x+1 \right )

 

b) Per rappresentare la funzione

f(x)=2\cdot \log_{2} \left ( x+1 \right )

posso non utilizzare le conoscenze della derivata per la sua rappresentazione partendo dal grafico della funzione

f(x)=\log _{2}x

che è:

<img loading=” width=”1341″ height=”1034″ />

La moltiplicazione per 2 fa sì soltanto che sia un po’ più alta (si noti la linea rossa) e che tenda meno velocemente allo 0.

f(x)=2\cdot \log _{2}x

grafico logaritmo2

sommare 1 all’argomento della radice significa traslare all’indietro il grafico (linea blu identificata con la lettera h) con asintoto in x=-1

f(x)=2\cdot \log_{2} \left ( x+1 \right )

grafico logaritmo3

c) Risolvo adesso analiticamente la disequazione:

2\cdot \log _{2}\left ( x+1 \right )\geq 3-\log _{\frac{1}{2}}x.

\log _{\frac{1}{2}}x=\cfrac{\log _{2}x}{\log _{2}\frac{1}{2}}=\cfrac{\log _{2}x}{-1}=-\log _{2}x

che diventa:

2\cdot \log _{2}\left ( x+1 \right )\geq 3+\log _{2}x.

il dominio è dato dallo studio del sistema di disequazione fornito dagli argomenti dei due logaritmi ossia:

\left\{ \begin{array}{c} x+1>0 \\ x>0 \end{array} \right.

che mi dà come soluzione

x>0

torno alla disequazione che diventa:

\log _{2}\left ( x+1 \right )^{2}\geq \log _{2}2^{3}+\log _{2}x.

\log _{2}\left ( x+1 \right )^{2}\geq \log _{2}8x

Avendo la stessa base ed essendo questa maggiore di 1 posso studiare la disequazione:

x^{2}+2x+1-8x\geq 0.

x^{2}-6x+1\geq 0

Risolvo l’equazione associata:

x_{1,2}=\cfrac{6\pm \sqrt{36-4}}{2}=\cfrac{6\pm \sqrt{32}}{2}=\cfrac{6\pm 4\sqrt{2}}{2}=3\pm 2\sqrt{2}.

per risolvere la disequazione di secondo grado uso il metodo della parabola ossia:

disequazionei punti d’intersezione con l’asse x sono le soluzioni precedentemente trovate.

I valori per cui la parabola è maggiore di zero sono i valori esterni ma ricordandomi anche il dominio che era:

x>0

la soluzione della disequazione diventa:

0<x\leq 3-2\sqrt{2}

e

x\geq 3+\sqrt{2}.

Per risolverla graficamente studio le seguenti due funzioni:

y=2\cdot \log _{2}\left ( x+1 \right )

identificata con la linea rossa

e al funzione:

y=3+\log_{2}x

identificata con la linea blu.disequazionesi nota infatti che la linea rossa è sopra a quella blu per i valori precedentemente trovati analiticamente.

Pubblicato in Senza categoria | Lascia un commento

Disequazione logaritmica

log_{\frac{1}{a}}\left ( x-1 \right )-log_{a^{2}}\left (x-1 \right )>0

Per risolverla devo avere la stessa base

Per fare questo utilizzo la seguente proprietà:

log_{a}b=\cfrac{log_{c}b}{log_{c}a}

ossia:

log_{\frac{1}{a}}\left ( x-1 \right )=\cfrac{log_{10\left ( x-1 \right )}}{log_{10}\left ( \cfrac{1}{a} \right )}=\cfrac{log_{10\left ( x-1 \right )}}{log_{10}\left ( a^{-1} \right )}=\cfrac{log_{10\left ( x-1 \right )}}{-log_{10}\left ( a \right )}=-\cfrac{log_{10\left ( x-1 \right )}}{log_{10}\left ( a \right )}

e

log_{a^{2}}\left (x-1 \right )=\cfrac{log_{10(x-1)}}{log_{10}a^{2}}=\cfrac{log_{10(x-1)}}{2log_{10}a}

e inserendoli in quella di partenza ho:

-\cfrac{log_{10\left ( x-1 \right )}}{log_{10}\left ( a \right )}-\cfrac{log_{10(x-1)}}{2log_{10}a}>0

e quindi facendo il m.c.m. la disequazione i di partenza diventa:

\cfrac{-2log_{10}(x-1)-log_{10}(x-1)}{2log_{10}a}>0

la disequazione di partenza è diventata:

\cfrac{-3log_{10}(x-1)}{2log_{10}a}>0

Lo studio del dominio parte dall’argomento del logaritmo posto al numeratore:

x-1>0

ossia

x>1

il dominio diventa:

D:\left \{ \forall x\epsilon \in {R}\mid x>1 \right \}

 

Adesso studio il segno del numeratore e del denominatore.

Il denominatore:

2log_{10}a>0

E’ positivo per

a>1

Mentre è negativo per

0<a<1

Il numeratore:

-3log_{10}(x-1)>0

il -3 viene rappresentato con una linea tratteggiata.

0=log_{10}1 e quindi diventa

log_{10}(x-1)>log_{10}1

Concentrandosi solo sugli argomenti devo risolvere la seguente semplice disequazione:

x-1>1

quindi

x>2

Ho la seguente rappresentazione grafica:

Immagine

Adesso unisco il denominatore, che mi fornisce la dipendenza della disequazione dal parametro, ed il segno del numeratore.

Per

a>1 il denominatore è positivo per cui ho il seguente schema:

Immagine

e quindi la prima soluzione è:

Per a>1

1<x<2

Per 0<a<1 il denominatore è negativo ed ho il seguente schema:

Immagine

ed ho la seconda soluzione:

Per 0<a<1

x>2

Pubblicato in Senza categoria | Lascia un commento