Massimi e minimi funzione a due variabili: gradiente e matrice hessiana

Vladimir Kush

Lo studio dei massimi e dei minimi per le funzioni a due variabili richiede l'introduzione di alcuni nuove strumenti matematici quali il gradiente e la matrice hessiana.

ll gradiente è un vettore le cui componenti sono le derivate parziali seconde della funzione, questo in un sistema ortonormale.

\nabla f=\left ( \cfrac{\delta f}{\delta x};\cfrac{\delta f}{\delta y};... \right )

La matrice hessiana è composta dalle derivate seconde parziali opportunamente combinate, per semplicità scrivo quella relativa alla matrice quadrata di rango 2.

H=\begin{pmatrix} \cfrac{\delta ^{2}f}{\delta x^{2}}} & \cfrac{\delta ^{2}f}{\delta x \delta y}}\\ \cfrac{\delta ^{2}f}{\delta y\delta x}}&\cfrac{\delta ^{2}f}{\delta y^{2}}} \end{pmatrix}

Per calcolare i massimi e i minimi di una funzione a più variabili attraverso la matrice hessiana devo analizzare le seguenti condizioni:

  • annullare il gradiente \nabla f=0 i relativi punti saranno poi usati nello studio del segno del determinante della matrice hessiana
  • \left | H\left ( P_{0} \right ) \right |>0 e f_{xx}>0 allora P_{0} è un minimo relativo
  • \left | H\left ( P_{0} \right ) \right |>0 e e f_{xx}<0 allora P_{0} è un massimo  relativo
  • \left | H\left ( P_{0} \right ) \right |<0 allora P_{0} è un punto di sella.

Con f_{xx}=\cfrac{\delta ^{2}f}{\delta x^{2}}}

Il punto di sella è quel punto tale per cui la matrice hessiana rimane indefinita o in particolare è quel punto tale che prendendo due curve passanti per P esso è sia minimo che massimo graficamente si ha:

Moltiplicatori di Lagrange per la ricerca dei massimi e minimi vincolati

L'applicazione del teorema di Lagrange lo si usa quando la funzione è vincolata da un'altra. L'applicazione del teorema di Lagrange fornisce una condizione necessaria ma non sufficiente ma consente comunque la determinazione dei massimi e dei minimi vincolati.

Senza entrare nel formalismo del teorema è sufficiente sapere che data la funzione f(x,y) e la funzione vincolo  g(x,y) si definisce

L\left ( x,y,\lambda \right )=f(x,y)+\lambda g(x,y)

Si annulla il gradiente di questa funzione e si sostituiscono i valori trovati in f(x,y) e li si confrontano e quelli minori sono i minimi e quelli maggiori sono i massimi.

Pubblicato in Senza categoria | Lascia un commento

Maturità 2012: testo e sviluppo della prova d'esame

Vladimir Kush

Testo: M557

1P. Primo Problema

2P. Secondo problema

1Q. Primo quesito

2Q. Secondo quesito

3Q. Terzo quesito

4Q. Quarto quesito

5Q. Quinto quesito

6Q. Sesto quesito

7Q. Settimo quesito

8Q. Ottavo quesito

9Q. Nono Quesito

10Q. Decimo quesito

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: decimo quesito

Samy Charnine

Data la funzione

(1)   \begin{equation*} f(x)=\left | 4-x^{2} \right | \end{equation*}

verificare che essa non soddisfa tutte le ipotesi del teorema di Rolle nell'intervallo [-3;3] e che comunque esiste almeno un punto dell'intervallo [-3;3] in cui la derivata prima f(x) si annulla. Questo esempio contraddice il teorema di Rolle? Motivare la risposta in maniera esaustiva.

Prerequisiti

  • conoscere il teorema di Rolle
  • saper fare il grafico di una funzione con il modulo
  • saper fare il grafico di una conica in maniera veloce

Sviluppo

Teorema di Rolle
Data una funzione f(x) definita in un intervallo limitato e chiuso [a;b] con le seguenti proprietà:

  • f(x) è continua in [a;b],
  • f(x) è derivabile in [a;b],
  • f(a)=f(b),

Sviluppo la funzione (1)

la applico:

(2)   \begin{equation*} \left | 4-x^2 \right |=\left\{\begin{matrix} 4-x^2 & 4-x^2 \geqslant 0\\ -(4-x^2) & 4-x^2<0 \end{matrix}\right. \end{equation*}

essa rappresenta due parabole con intersezioni con l'asse x che valgono +2 e -2.
Il grafico è infatti:

Il teorema di Rolle non è soddisfatto in quanto in -2 ed in 2 la funzione non è derivabile e sono due punti all'intervallo dell'intervallo [-3;3].
Non sono punti di derivabilità in quanto punti angolosi.

Ma se restringo l'intervallo, ad esempio[-1;1] il teorema di Rolle è perfettamente applicabile.
Infatti f(1)=f)-1) e tutte le altre condizioni dono soddisfatte.

Pubblicato in Senza categoria | Contrassegnato | Lascia un commento

Maturità 2017: nono quesito

Samy Charnine

Dimostrare che l'equazione:

(1)   \begin{equation*} \arctan (x)+x^{3}+e^{x}=0 \end{equation*}

ha una e una sola soluzione reale

Prerequisiti

  • conoscere il teorema di unicità dello zero
  • calcolare la derivata
  • calcolare un limite
  • sapere la derivata delle funzioni trigonometriche

Sviluppo
Il teorema di unicità dello zero afferma che:
Se la derivata f'(x) è non nulla in ogni punto di \left (a,b \right ), la funzione ammette soltanto uno zero in tale intervallo aperto.

pongo

(2)   \begin{equation*} f(x)=\arctan (x)+x^{3}+e^{x} \end{equation*}

Calcolo i seguenti due limiti:

(3)   \begin{equation*} \underset{x\rightarrow+\infty  }{lim}f(x)=+\infty \end{equation*}

(4)   \begin{equation*} \underset{x\rightarrow-\infty}{lim}f(x)=-\infty \end{equation*}

effettuando adesso al derivata prima ho:

(5)   \begin{equation*} f'(x)=\cfrac{1}{1+x^2}+3x^{2}+e^{x} \end{equation*}

La derivata prima è sempre positiva per cui la funzione di partenza è sempre crescente.

Le ipotesi del teorema sono soddisfatte e l'equazione ha una e una sola soluzione reale.

Il grafico di questa funzione è infatti:

 

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: ottavo quesito

Vladimir Kush

Un dado ha la forma di un dodecaedro regolare con le facce numerate da 1 a 12. Il dado è truccato in modo che la faccia contrassegnata dal numero 3 si presenti con una probabilità doppia rispetto a ciascun'altra faccia. Determinare il valore di p in percentuale e calcolare la probabilità che in 5 lanci del dado la faccia 3 esca almeno 2 volte.

Prerequisiti

  • conoscere i teoremi della probabilità
  • conoscere la permutazioni con ripetizione
  • conoscere la probabilità di eventi indipendenti

Sviluppo

La somma della probabilità di tutti gli eventi mi dà sempre 1.

Nel caso specifico la probabilità che esca la faccia dall'1 al 12 escluso il 3 è p mentre 2p se esce il 3; ho 11 facce equiprobabili, per cui vale la seguente equazione:

(1)   \begin{gather*} 2p+11p=1 \\ 13p =1 \\ p=\cfrac{1}{13} \end{gather*}

Perché un evento possa verificarsi almeno significa che potrebbe sempre capitare o esserci almeno il numero di volte richiesto.

Nel caso specifico la probabilità che in 5 lanci esca il 3 è dato da:

(2)   \begin{equation*} \left (\cfrac{2}{13} \right )^5 \end{equation*}

Per conoscere tutte le possibili permutazioni nel caso in cui uscisse 4 volte il 3 ed una sola volta un altro numero uso la seguente relazione:

(3)   \begin{equation*} P_{n}^{h,k}=\cfrac{n!}{h!k!\cdot ...} \end{equation*}

Si usa ad esempio quante parole diverse non di senso compito possono essere fatte con la parola AABCDE con il gruppo AA che si ripete.

Perché esca 4 volte
ho

(4)   \begin{equation*} P_{5}^{4,1}=\cfrac{5!}{4!1!}=5 \end{equation*}

ad esempio 3 3 3 3 5

La probabilità diventa:

(5)   \begin{equation*} 5\left (\cfrac{2}{13} \right )^4\cfrac{11}{13} \right \end{equation*}

Perché esca 3 volte
ho

(6)   \begin{equation*} P_{5}^{3,2}=\cfrac{5!}{3!1!}=10 \end{equation*}

ad esempio 3 3 3 5 5

La probabilità diventa:

(7)   \begin{equation*} 10\left (\cfrac{2}{13} \right ) ^3\left (\cfrac{11}{13}\right )^2 \right \end{equation*}

Perché esca 2 volte
ho

(8)   \begin{equation*} P_{5}^{2,3}=\cfrac{5!}{2!3!}=10 \end{equation*}

ad esempio 3 3 5 5 5

La probabilità diventa:

(9)   \begin{equation*} 10\left (\cfrac{2}{13} \right )^2\left (\cfrac{11}{13}\right )^3 \right \end{equation*}

sommando la (2), (5), (7) e la (9) si ha

(10)   \begin{equation*} \left (\cfrac{2}{13} \right )^5+5\left (\cfrac{2}{13} \right )^4\cfrac{11}{13} \right +10\left (\cfrac{2}{13} \right ) ^3\left (\cfrac{11}{13}\right )^2 \right + 10\left (\cfrac{2}{13} \right )^2\left (\cfrac{11}{13}\right )^3 \right=0,1719 \end{equation*}

in percentuale diventa

il 17,19%

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: settimo quesito

Alex Alemany

Determinare le coordinate dei centri delle sfere di raggio \sqrt{6} tangenti sl piano \pi di equazione:

(1)   \begin{equation*} x+2y-z+1=0 \end{equation*}

nel suo punto P di coordinate (1,0,2).

Prerequisiti

  • conoscere l'equazione della sfera nello spazio
  • conoscere la formula che esprime la distanza di un punto da un piano
  • conoscere l'equazione della retta passante per un punto e perpendicolare ad un piano
  • conoscere la condizione di appartenenza di un punto ad una retta

Sviluppo

L'equazione di una retta passante per un punto in forma parametrica è:

(2)   \begin{equation*} \left\{\begin{matrix} x=x_{0}+lt \\ y=y_{0}+mt\\ z=z_{0}+nt \end{matrix}\right. \end{equation*}

l,m,n, rappresentano le coordinate del vettore direzione v(l,m,n) ossia quello parallelo alla retta.

L'equazione generale di un piano ha equazione:

(3)   \begin{equation*} ax+by+cz+d=0 \end{equation*}

i coefficienti a,b e c rappresentano le coordinate del vettore perpendicolare al piano.

Unendo queste due richiami teorici la retta passante per P(1,0,2) e perpendicolare al piano \pi: x+2y-z+1=0 in forma parametrica è:

(4)   \begin{equation*} \left\{\begin{matrix} x=1+t \\ y=2t\\ z=2-t \end{matrix}\right. \end{equation*}

La formula della sfera è:

(5)   \begin{equation*} \left ( x-\alpha \right )^2+\left ( y-\beta \right )^2+\left ( z-\gamma \right )^2=r^{2} \end{equation*}

con C\left ( \alpha ,\beta ,\gamma \right ) centro della sfera ed r raggio della sfera.

applicandola si ha:

(6)   \begin{equation*} \left ( x-\alpha \right )^2+\left ( y-\beta \right )^2+\left ( z-\gamma \right )^2=6 \end{equation*}

Adesso richiamo la formula della distanza di un punto da un piano:

(7)   \begin{equation*} d=\cfrac{\left | ax_{0}+by_{0}+cz_{0}+d \right |}{\sqrt{a^{2}+b^{2}+c^{2}}} \end{equation*}

con a,b,c i coefficienti del piano (3) e P(x_{0},y_{0},z_{0}) il punto P di cui si vuole conoscere la distanza dal piano stesso.

Applicandola sapendo che la distanza tra il centro C\left ( \alpha ,\beta ,\gamma \right ) e il piano \pi: x+2y-z+1=0 vale \sqrt{6}:

(8)   \begin{equation*} d=\cfrac{\left | \alpha \cdot 1+\beta \cdot 2+\gamma \cdot -1 +1 \right |}{\sqrt{1+4+1}}}=\sqrt{6} \end{equation*}

Il centro C\left ( \alpha ,\beta ,\gamma \right ) appartiene alla retta trovata (4) per cui essa diventa:

(9)   \begin{equation*} \left\{\begin{matrix} \alpha =1+t \\ \beta =2t\\ \gamma=2-t \end{matrix}\right. \end{equation*}

adesso esprimo t in funzione delle coordinate del centro

(10)   \begin{equation*} \left\{\begin{matrix} t=\alpha-1 \\ \beta =2\alpha-2\\ \gamma=3-\alpha \end{matrix}\right. \end{equation*}

Adesso sostituisco i valori trovati nella (8) ed ho:

(11)   \begin{gather*} \cfrac{\left | \alpha+2(2\alpha-2)-3+\alpha+1 \right |}{\sqrt{1+4+1}}=\sqrt{6} \\ \left | 6\alpha -6 \right |=6 \\ \left | \alpha -1 \right |=1 \end{gather*}

Sapendo che in generale

(12)   \begin{equation*} \left | x \right |=\left\{\begin{matrix} x & x\geqslant 0\\ -x & x<0 \end{matrix}\right. \end{equation*}

la applico:

(13)   \begin{equation*} \left | \alpha -1 \right |=\left\{\begin{matrix} \alpha -1 & \alpha \geqslant 1\\ -\alpha +1 & \alpha <1 \end{matrix}\right. \end{equation*}

quindi ho due equazioni:

(14)   \begin{gather*} \alpha -1=1 \\ \alpha =2 \end{gather*}

e

(15)   \begin{gather*} -\alpha +1=1 \\ \alpha =0 \end{gather*}

i due centri hanno equazione:

(16)   \begin{equation*} C_{1}\left ( 0,-2,3 \right ) \end{equation*}

e

(17)   \begin{equation*} C_{2}\left ( 2,2,1 \right ) \end{equation*}

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: sesto quesito

Alex Alemany

Determinare il numero reale a in modo che il valore di

(1)   \begin{equation*} \underset{x\rightarrow 0}{lim}\cfrac{\sin (x)-x}{x^{a}} \end{equation*}

sia un numero reale non nullo.

Prerequisiti

  • conoscere come calcolare un limite
  • conoscere i limiti indeterminati
  • conoscere il teorema di De l'Hopital

Sviluppo

Se sostituisco il valore a cui tende la x nella (1) mi accorgo si essere nella condizione \cfrac{0}{0} e posso applicare De l'Hopital.

Il teorema di De l'Hopital afferma che nel caso in cui ci si trova nella condizione \cfrac{0}{0} o \cfrac{\infty }{\infty } allora:

(2)   \begin{equation*} \underset{x\rightarrow x_{0}}{lim}\cfrac{f(x)}{g(x)}=\underset{x\rightarrow x_{0}}{lim}\cfrac{f'(x)}{g'(x)} \end{equation*}

che significa fare la derivata del numeratore e del denominatore separatamente e NON la derivata del quoziente di funzione!

Applico la (2):

(3)   \begin{equation*} \underset{x\rightarrow 0}{lim}\cfrac{\sin (x)-x}{x^{a}}=\underset{x\rightarrow 0}{lim}\cfrac{\cos (x)-1}{a\cdot x^{a-1}} \end{equation*}

Sostituisco il valore a cui tende la x nella (3) e mi accorgo si essere ancora nella condizione \cfrac{0}{0} ma potrei porre l'esponente della x del denominatore a 0 e conseguentemente togliere la condizione che lo annulla (a=1), in questo caso il limite tenderebbe a 0, ma stiamo cercando un valore reale non nullo.
Applico nuovamente De l'Hopital.

(4)   \begin{equation*} \underset{x\rightarrow 0}{lim}\cfrac{\cos (x)-1}{a\cdot x^{a-1}}= \underset{x\rightarrow 0}{lim}\cfrac{-\sin (x)}{a\cdot (a-1) \cdot x^{a-2}} \end{equation*}

Sostituisco il valore a cui tende la x nella (4) e mi accorgo si essere ancora nella condizione \cfrac{0}{0} ma potrei porre l'esponente della x del denominatore a 0 e conseguentemente togliere la condizione che lo annulla (a=2), in questo caso il limite tenderebbe a 0, ma stiamo cercando un valore reale non nullo.
Applico nuovamente De l'Hopital.

(5)   \begin{equation*} \underset{x\rightarrow 0}{lim}\cfrac{-\sin (x)}{a\cdot (a-1) \cdot x^{a-2}}=\underset{x\rightarrow 0}{lim}\cfrac{-\cos (x)}{a\cdot (a-1) \cdot (a-2) \cdot x^{a-3}} \end{equation*}

Sostituisco il valore a cui tende la x nella (4) e mi accorgo di essere adesso nella condizione \cfrac{-1}{0}=\infty ma pongo l'esponente della x del denominatore a 0 e, conseguentemente, togliere la condizione che lo annulla (a=3), in questo caso la (5) diventa:

(6)   \begin{equation*} \underset{x\rightarrow 0}{lim}\cfrac{-\cos (x)}{a\cdot (a-1) \cdot (a-2) \cdot x^{a-3}}=\underset{x\rightarrow 0}{lim}\cfrac{-\cos (0)}{3\cdot (3-1) \cdot (3-2) \cdot x^{0}}=-\cfrac{1}{6} \end{equation*}

L'unico valore per cui il limite assume un valore reale non nullo è:

(7)   \begin{equation*} a=3 \end{equation*}

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: quesito 5

Alex Alemany

Dati i punti A(-2,3,1), B(3,0,-1), C(2,2,-3), determinare l'equazione della retta r passante per A e per B e l'equazione del piano \pi perpendicolare ad r e passante C.

Prerequisiti

  • conoscere l'equazione della retta passante per due punti nello spazio
  • capire il significato dei coefficienti numerici della retta e di un piano
  • capire il significato di un punto appartenente ad una curva

Sviluppo

L'equazione di una retta passante per due punti ha equazione:

(1)   \begin{equation*} \left\{\begin{matrix} x=x_{2}+\left ( x_{1}-x_{2} \right )t \\ y=y_{2}+\left ( y_{1}-y_{2} \right )t\\ z=z_{2}+\left ( z_{1}-z_{2} \right )t \end{matrix}\right. \end{equation*}

Applicandola al caso posto dal quesito, la retta passante per A e per B ha equazione:

(2)   \begin{equation*} \left\{\begin{matrix} x=-2+5t \\ y=3-3t\\ z=1-2t \end{matrix}\right. \end{equation*}

i coefficienti di x (5), di y (-3), di z (-2), rappresentano le coordinate del vettore direzione v(5,-3,-2) ossia quello parallelo alla retta.
L'equazione generale di un piano ha equazione:

(3)   \begin{equation*} ax+by+cz+d=0 \end{equation*}

i coefficienti a,b e c rappresentano le coordinate del vettore perpendicolare al piano.

Conseguenza di questo l'equazione del piano \pi utilizza le coordinate della retta:

(4)   \begin{equation*} 5x-3y-2z+d=0 \end{equation*}

Per trovare d è sufficiente sostituire le coordinate del punto C e risolvere la relativa equazione di primo grado in d:

(5)   \begin{gather*} 10-6+6+d=0 \\ d=-10 \end{gather*}

L'equazione del piano risulta:

(6)   \begin{equation*} 5x-3y-2z-10=0 \end{equation*}

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: quarto quesito

Samy Charnine

Per sorteggiare numeri reali nell'intervallo [0;2] viene realizzato un generatore di numeri casuali che fornisce numeri distribuiti, in tale intervallo, con densità di probabilità data dalla funzione:

(1)   \begin{equation*} f(x)=\cfrac{3}{2}x^{2}-\cfrac{3}{4}x^{3} \end{equation*}

Quale sarà il valore medio dei numeri generati?
Qual è la probabilità che il primo numero estratto sia \cfrac{4}{3}?
Qual è la probabilità che il secondo numero estratto sia minore di 1?

Prerequisiti

  • conoscere cosa rappresenta in ambito statistico la densità di probabilità
  • conoscere come calcolare il valor medio di una variabile aleatoria continua
  • saper sviluppare un integrale

Sviluppo

La densità di probabilità fornisce, come dice il nome stesso, la probabilità che accada un evento continuo all'interno di un intervallo. Per conoscere tale valore si deve calcolare l'area sottesa dalla curva ed essa si calcola attraverso proprio un integrale nell'intervallo voluto.

(2)   \begin{equation*} P\left ( X\in A \right )=\int_{A}p_{X}(x)dx \end{equation*}

Per calcolare il valor medio di una variabile aleatoria continua si deve applicare:

(3)   \begin{equation*} m=\int_{A}xf(x)dx \end{equation*}

applicandolo al caso specifico il valor medio risulta

(4)   \begin{gather*} m=\int_{0}^{2}\cfrac{3}{2}x^{3}-\cfrac{3}{4}x^{4}dx \\ \left\begin{matrix} \cfrac{3}{2}\cfrac{x^{4}}{4}-\cfrac{3}{4}\cfrac{x^5}{5} \end{matrix}\right|_{0}^{2} \\ \cfrac{3}{2} \cdot \cfrac{16}{4}-\cfrac{3}{4}\cdot \cfrac{32}{5} \\ 6-\cfrac{24}{5}= \\ m=\cfrac{6}{5} \end{gather*}

Chiedere la probabilità che venga estratto un particolare numero non ha significato in quanto essendo definito uno spazio continuo di valori cercare di sapere esattamente un valore preciso è come cercare di dare una descrizione statistica di eventi discreti con una densità di probabilità.

Mentre si può calcolare agevolmente la probabilità che un numero estratto sia minore di 1 sviluppando il seguente integrale:

(5)   \begin{gather*} P[x<1]=\int_{0}^{1}\cfrac{3}{2}x^{2}-\cfrac{3}{4}x^{3}dx \\ \left\begin{matrix} \cfrac{3}{2}\cfrac{x^{3}}{3}-\cfrac{3}{4}\cfrac{x^4}{4} \end{matrix}\right|_{0}^{1} \\ \cfrac{3}{2} \cdot \cfrac{1}{3}-\cfrac{3}{4}\cdot \cfrac{1}{4} \\ \cfrac{1}{2}-\cfrac{3}{16}= \\ P[x<1]=\cfrac{5}{16} \end{gather*}

Pubblicato in Senza categoria | Lascia un commento

Maturità 2017: terzo quesito

Paul Klee

Sapendo che:

(1)   \begin{equation*} \underset{x\rightarrow0}{lim}\cfrac{\sqrt{ax+2b}-6}{x}=1$ \end{equation*}

determinare i valori di a e b.

Prerequisiti

  • conoscere il calcolo con i limiti
  • sapere fare la razionalizzazione inversa
  • prodotto notevole della differenza del binomio
  • conoscere il metodo della fattorizzazione per eliminare gli zeri del numeratore e denominatore

Sviluppo

Sostituendo il valore 0 alla x del numeratore e del denominatore mi trovo nella situazione:

\cfrac{\sqrt{2b}-6}{0}=\infty

La razionalizzazione inversa è necessaria per poter semplificare la x presente al numeratore con quella del denominatore; utilizzo il prodotto notevole

(2)   \begin{equation*} \left ( a+b \right )\cdot \left ( a-b \right )=a^{2}-b^{2} \end{equation*}

Bisogna anche ricordarsi che il quadrato di una radice quadrata mi dà proprio il radicando ossia l'argomento della radice.

(3)   \begin{equation*} \left (\sqrt{5}  \right )^2=5 \end{equation*}

Applicandola ad un prodotto notevole ho:

(4)   \begin{equation*} \left ( \sqrt{a}+b \right )\left ( \sqrt{a}-b \right )=\left ( \sqrt{a} \right )^2-b^{2}=a-b^2 \end{equation*}

Faccio la razionalizzazione inversa ossia moltiplico il numeratore ed il denominatore per \sqrt{ax+2b}+6 e la (1) diventa:

(5)   \begin{gather*} \cfrac{\left ( \sqrt{ax+2b}-6 \right )\left ( \sqrt{ax+2b}+6 \right )}{x\left ( \sqrt{ax+2b}+6 \right )} \\ \cfrac{ ax+2b-36 }{x\left ( \sqrt{ax+2b}+6 \right )} \end{gather*}

Adesso per togliere lo zero che annulla sia il numeratore che il denominatore pongo:

(6)   \begin{gather*} 2b-36=0 \\ b=18 \end{gather*}

sostituendo il valore trovato nella (6) nella (1) il limite diventa:

(7)   \begin{equation*} \underset{x\rightarrow0}{lim}\cfrac{ ax }{x\left ( \sqrt{ax+36}+6 \right )} \\ \end{equation*}

Solo adesso, dopo avere eseguito la razionalizzazione inversa, posso semplificare la x presente nel numeratore con quella del denominatore.

(8)   \begin{equation*} \underset{x\rightarrow0}{lim}\cfrac{ a }{\sqrt{ax+36}+6}  \end{equation*}

Perché tale limite vada ad 1 è sufficiente risolvere la seguente equazione avendo posto a 0 il valore dell x (il valore a cui tende il limite)

(9)   \begin{gather*} \cfrac{ a }{\sqrt{36}+6}=1 \\ \cfrac{ a }{6+6}=1 \\ a=12 \end{gather*}

quindi ricapitolando i due valori sono:

(10)   \begin{gather*} a=12 \\ b=18 \end{gather*}

Pubblicato in Senza categoria | Contrassegnato | Lascia un commento