Circonferenza: formula di sdoppiamento

Salvador Dalì - "Afrodite"

La formula di sdoppiamento viene utilizzata per

DETERMINARE LA RETTA TANGENTE ALLA CIRCONFERENZA IN UN PUNTO CHE APPARTIENE ALLA CIRCONFERENZA

Eccola:

x\cdot x_{0}+y\cdot y_{0}+a\left(\cfrac{x+x_{0}}{2}\right)+b\left(\cfrac{y+y_{0}}{2}\right)+c=0

DIMOSTRAZIONE

L'equazione della circonferenza è:

(1) x^{2}+y^{2}+ax+by+c=0

il punto P(x_{0},y_{0}) appartiene alla circonferenza per cui è soddisfatta la seguente identità:

(2) x_{0}^{2}+y_{0}^{2}+ax_{0}+by_{0}+c=0

Sottraggo la seconda alla prima e si ha:

(3) (x^{2}-x_{0}^{2})+(y^{2}-y_{0}^{2})+ax-ax_{0}+by-by_{0}+c-c=0

semplifico, sviluppo i due binomi tra parentesi come la differenza di binomi e raggruppo diventa:

(4) (x-x_{0})(x+x_{0})+(y-y_{0})(y+y_{0})+a(x-x_{0})+b(y-y_{0})=0

Considerando adesso che l'equazione della retta passante per il punto P ha equazione:

(5) y-y_{0}=m(x-x_{0})

sostituisco la (5) nella (4), quest'ultima diventa:

(6) (x-x_{0})(x+x_{0})+m(x-x_{0})(y+y_{0})+a(x-x_{0})+bm(x-x_{0})=0

posso dividere il tutto per (x-x_{0})

e la (6) diventa:

(7) (x+x_{0})+m(y+y_{0})+a+bm=0

siccome il punto P appartiene a questa curva sostituendo le sue coordinate la (7) diventa:

(8) (x_{0}+x_{0})+m(y_{0}+y_{0})+a+bm=0 sviluppando le parentesi

(9) x_{0}+x_{0}+my_{0}+my_{0}+a+bm=0 sommando i monomi uguali ho:

(10) 2x_{0}+2my_{0}+a+bm=0 risolvendola rispetto la variabile m:

(11) m=-\cfrac{a+2x_{0}}{b+2y_{0}}.

Ultimo passo è sostituire la (11) nell'equazione generica della retta (5) che diventa:

(12) y-y_{0}=-\cfrac{a+2x_{0}}{b+2y_{0}}(x-x_{0})

facendo il m.c.m. ho:

(13) (y-y_{0})(b+2y_{0})=-(a+2x_{0})(x-x_{0}) sviluppando il prodotto dei binomi e portando tutto dalla stessa parte:

(14) by+2yy_{0}-by_{0}-2y_{0}^{2}+ax-ax_{0}+2xx_{0}-2x_{0}^{2}=0 riordinando i vari termini ho

(15)  2xx_{0}+2yy_{0}+ax-ax_{0}+by-by_{0}-2(x_{0}^{2}+y_{0}^{2})=0

ora dalla (2) so che:

(16) x_{0}^{2}+y_{0}^{2}=-c-ax_{0}-by_{0} sostituendola al binomio tra parentesi e sviluppando la moltiplicazione per 2 ho:

(17) 2xx_{0}+2yy_{0}+ax-ax_{0}+by-by_{0}+2c+2ax_{0}+2by_{0}=0 e sommando i binomi risulta:

(18) 2xx_{0}+2yy_{0}+ax+ax_{0}+by+by_{0}+2c=0 dividendo per 2 tutti i monomi risulta la formula di sdoppiamento conosciuta:

(19) x\cdot x_{0}+y\cdot y_{0}+a\left(\cfrac{x+x_{0}}{2}\right)+b\left(\cfrac{y+y_{0}}{2}\right)+c=0

Info su Francesco Bragadin

Insegno informatica e telecomunicazioni al liceo scienze applicate ed all'indirizzo informatica e telecomunicazioni. Ho terminato gli studi in ingegneria elettronica e telecomunicazioni lavorando per molti anni come libero professionista nell'ambito della gestione storage e disaster recovery su mainframe.
Questa voce è stata pubblicata in Senza categoria. Contrassegna il permalink.

4 risposte a Circonferenza: formula di sdoppiamento

  1. Nicola scrive:

    Formula che complica la vita agli studenti perchè costringe a imparare un mucchio di roba a memoria !!! Quale è il valore aggiunto rispetto al sistema retta / circonferenza e porre il delta a zero ?

    • Francesco Bragadin scrive:

      La formula permette di trovare l'equazione della retta in tempi molto inferiori rispetto a quello del "sistema". Inoltre esso è poi applicabile per ogni conica e l'intersezione con una retta. In certi casi, vedi esame di maturità, poi università e poi infine nel calcolo avanzato ingegneristico e non solo, tale metodo risparmia molti calcoli. Inoltre esso è molto valido nel caso anche si volesse implementare un algoritmo che possa dare immediatamente l'equazione della retta tangente con un programma.
      Grazie comunque per la tua riflessione.

  2. Giovanni scrive:

    Dalla dimostrazione mi riamane comunque un dubbio,
    per quale regola matematica ci è consentito di passare dal passaggio 2 a quello 3;
    Perchè possimao eseguire la differenza tra l' equazione della circonferenza con xp e yp e quella generale?

    • Francesco Bragadin scrive:

      Buongiorno Giovanni,
      come in tutte le equazioni, pensa ai sistemi di equazione ed al metodo della riduzione o dell'addizione, posso sempre sommare due equazioni trovandone una terza. Ad esempio, scrivendo a+b=0 e c+d=0 posso sempre scrivere a+b=0=c+d ossia a+b+c+d=0 ossia le ho sommate.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *