TPSIT - Crittografia - Piccolo teorema di Fermat

Se p è un numero primo allora

a^{p}\equiv a\;mod\;p

equivalente a:

a^{p}\;mod\;p=a\;mod\;p

una sua conseguenza

a^{p-1}\;mod\;p=1\;mod\;p

equivalente a:

a^{p-1}\equiv 1\;mod\;p

fondamentale che p sia un numero primo!

Esempi di sua applicazione

Tabella dei numeri primi

2^{3}\;mod\;3=2\;mod\3=2

10^{29}\;mod\;29=10\;mod\;29=10

15^{28}\;mod\;29=1\;mod\;29=1

Informazioni su Francesco Bragadin

Insegno informatica e telecomunicazioni al liceo scienze applicate ed all'indirizzo informatica e telecomunicazioni. Ho terminato gli studi in ingegneria elettronica e telecomunicazioni lavorando per molti anni come libero professionista nell'ambito della gestione storage e disaster recovery su mainframe.
Questa voce è stata pubblicata in Senza categoria. Contrassegna il permalink.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *