INVALSI ON LINE - QUIZ sulla Retta

untitled

Per esercitarsi con le rette nell'ottica del superamento del test INVALSI per la scuola secondaria di secondo grado

Sie müssen eine Text angeben.
Sie müssen eine Text angeben.
Sie müssen dieses Feld ausfüllen.

 

Veröffentlicht unter Senza categoria | 1 Kommentar

Parabola "pura" con due intersezioni con gli assi

Si studi la seguente parabola:

y=x^{2}-4

primo passo: intersezioni con gli assi:

pongo x=0

allora si ha:

y=-4

pongo y=0

devo risolvere l'equazione

x^{2}-4=0

per esercitarsi su questo tipo di equazioni si può andare al seguente link:

risoluzione equazioni di secondo grado pure

che ha come soluzioni:

x_{1,2}=\pm \sqrt{4}=\pm 2

secondo passo: analisi della concavità

A=1

essendo positiva la concavità è sempre verso l'alto

pura2

 

 

 

 

 

terzo passo: calcolo del vertice

A=1; B=0; C=-4

-\cfrac{B}{2\cdot A}=-\cfrac{0}{2\cdot 1}=0

-\cfrac{B^{2}-4\cdot A\cdot C}{4\cdot A}=-\frac{0^{2}-4\cdot 1\cdot (-4))}{4\cdot 1}=-\cfrac{16}{4}=-4

 

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

Parabola "pura"

Le parabole pure sono del tipo:

y=x^{2}-4

 

y=x^{2}-16

 

y=x^{2}-0

 

che più velocemente viene scritta come

y=x^{2}

Studio adesso quest'ultima.

Passo1: intersezioni con gli assi:

x=0

allora

y=0

ancora, se metto y=0

la x è ancora 0.

Passo 2: analisi della concavità

A=1

ossia la concavità è verso l'alto

Passo 3: coordinate del vertice

-\cfrac{B}{2\cdot A}=-\cfrac{0}{2\cdot 1}=0

 

-\cfrac{B^{2}-4\cdot A\cdot C}{4\cdot A}=-\cfrac{0^{2}-4\cdot 1\cdot 0}{4\cdot 1}=0

quindi li grafico risulta

pura

 

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

Rappresentazione parabola "spuria"

Per parabola spuria considero di questo tipo:

y=x^{2}-4x

1 passo: intersezioni con gli assi

pongo

x=0

ed ho:

y=0

pongo

y=0

 

x^{2}-4x=0

questa volta non serve usare la formula risolutiva per l'equazione di secondo grado ma è sufficiente raccogliere la x ossia:

x\left ( x-4 \right )=0

la prima parte conferma la soluzione già trovata precedentemente ossia

x=0

la seconda è la soluzione dell'equazione di primo grado:

\left ( x-4 \right )=0

ossia

x=4

passo2: analisi del coefficiente A per capire la concavità

A=1

per cui la concavità è verso l'alto.

Il grafico risulta quindi:

spuria

 

 

 

 

 

 

passo3: calcolo delle coordinate del vertice

A=1; B=-4; C=0

-\cfrac{B}{2\cdot A}=-\cfrac{-4}{2}=2

 

-\cfrac{B^{2}-4\cdot A\cdot C}{4\cdot A}=-\cfrac{(-4)^{2}-4\cdot 1\cdot 0}{4}=-4

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

Übungen über die Darstellung der Parabel

thYYH0K4C9

Jim Warren

Stelle diejenige Parabel auf dem Koordinatensystem dar:

y=x^{2}-9x+20

Punkt 1: Interasektion der Axen

Rechnung der Intersektionen

Stelle x=0 und man erhält

y=20.

Jetzt stelle ich y=0 und muss die Gleichung des zweiten Grades lösen

1\cdot x^{2}-9\cdot x+20 =0

Ich identifiziere A,B und C als drei Koefitienten, die mir die Möglichkeit geben die Gleichung des zweiten Grades zu lösen.

A= 1

B= -9

C=20

Ích ersetze sie:

x_{1,2}=\cfrac{-B\pm \sqrt{B^{2}-4\cdot A\cdot C}}{2\cdot A}

und man hat:

x_{1,2}=\cfrac{9\pm \sqrt{9^{2}-4\cdot 1\cdot 20}}{2\cdot 1}=\cfrac{9\pm \sqrt{81-80}}{2}=\cfrac{9\pm 1}{2}

man hat die folgenden Intersektionen:

x_{1}=\cfrac{9+1}{2}=\cfrac{10}{2}=5

und

x_{2}=\cfrac{9-1}{2}=\cfrac{8}{2}=4

Punkt 2: Analyse des Zeichens A

Das A=1, also die Parabel hat Höhlung von unten nach oben; und wird so dargestellt:

sadas

Punkt 3: Koordinaten des Scheitelpunktes der Parabel:

-\cfrac{B}{2A}=-\cfrac{-9}{2\cdot 1}=\cfrac{9}{2}

-\cfrac{B^{2}-4\cdot A\cdot C}{4\cdot A}=-\cfrac{(-9)^{2}-4\cdot 1\cdot 20}{4\cdot 1}= -\cfrac{81-80}{4}=-\cfrac{1}{4}

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

I tre passi per rappresentare una parabola

imagesIFY91FGLI passi per rappresentare un parabola sul piano cartesiano sono

  • intersezioni: con l'asse delle x (ponendo a zero la y); con l'asse delle y (ponendo a zero la x)
  • valutare il segno del coefficiente che moltiplica la x alla seconda
  • Calcolare il vertice della parabola che ha coordinate:

V \left ( -\cfrac{B}{2\cdot A}; -\cfrac{B^{2}-4\cdot A\cdot C}{4\cdot A} \right)

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

INVALSI - Raccolta dei problemi solo sul piano cartesiano/retta/applicazioni

untitledTale raccolta nasce per creare un modulo di approfondimento per affrontare quella pletora di argomenti sul piano cartesiano e retta.

piano_cartesiano_INVALSI

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

INVALSI secondaria secondo grado a/s 2012/2013

invalsi_matematica_2012-2013_secondarisa_seconda

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

INVALSI secondaria di secondo grado a/s 2010/2011

invalsi_matematica_2010-2011_secondaria_seconda

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar

INVALSI secondaria di secondo grado a/s 2011/2012

invalsi_matematica_2011-2012_secondaria_seconda

Veröffentlicht unter Senza categoria | Hinterlasse einen Kommentar