Razionalizzazione: esercizi per livelli

Rafel Olbinski

Rafel Olbinski

Razionalizzare significa quindi togliere la radice dal denominatore trovando chiaramente una frazione equivalente.

Tale operazione viene usata molto spesso nel trovare la soluzione delle equazioni di secondi grado e nello studio di funzioni polinomiali o nelle funzioni trigonometriche.

La parte più importante dei radicali è proprio la razionalizzazione che poi è una diretta conseguenza delle proprietà delle potenze.

Inserisco adesso degli esercizi suddivisi per livello.

Per un livello sufficiente (6):

 6.1. \cfrac{4}{\sqrt{5}} \left [ \cfrac{4\sqrt{5}}{5} \right ]
6.2. \cfrac{6}{\sqrt{3}} \left [ 2\sqrt{3} \right ]
6.3. \cfrac{9}{\sqrt{15}} \left [ \cfrac{3\sqrt{15}}{5} \right ]
6.4.  \cfrac{9}{\sqrt{6}} \left [ \cfrac{3\sqrt{6}}{2} \right ]
6.5.  \cfrac{5}{\sqrt{10}} \left [ \cfrac{\sqrt{10}}{2} \right ]
6.6. \cfrac{3}{\sqrt{12}} \left [ \cfrac{\sqrt{3}}{2} \right ]
6.7.  \cfrac{2}{\sqrt{2}} \left [ \sqrt{2} \right ]
6.8.   \cfrac{3}{\sqrt{3}} \left [ \sqrt{3} \right ]
6.9. \cfrac{5}{\sqrt{2}} \left [ \cfrac{5\sqrt{2}}{2} \right ]
6.10.  \cfrac{1}{\sqrt{8}} \left [ \cfrac{\sqrt{2}}{4} \right ]
6.11. \cfrac{9}{\sqrt{12}} \left [ \cfrac{3\sqrt{3}}{2} \right ]
6.12. \cfrac{15}{\sqrt{20}} \left [ \cfrac{3\sqrt{5}}{2} \right ]

About Francesco Bragadin

Insegno informatica, matematica e fisica. Ho terminato gli studi di ingegneria presso l'Università di Padova nel 1990 e mi occupo di analisi di reti, sviluppo siti web, applicazioni di app nell'ambito matematico.
This entry was posted in Senza categoria. Bookmark the permalink.

1 Response to Razionalizzazione: esercizi per livelli

  1. Pietro says:

    Gli esercizi sono molto interessanti

Leave a Reply

Your email address will not be published. Required fields are marked *