Maturità 2019: secondo problema – terzo punto

Per a > 0, si consideri la funzione f: \mathbb{R}\rightarrow \mathbb{R} definita da:

f(t)=-\cfrac{t}{\sqrt{\left ( t^2+a^2 \right )^3}}

  • Verificare che:

F(t)=\cfrac{1}{\sqrt{t^{2}+a^{2}}}-\cfrac{1}{a}

è la primitiva di f il cui grafico passa per l’origine.

  • Studiare la funzione F individuandone eventuali simmetrie, asintoti, estremi.
  • Provare che F presenta due flessi nei punti di ascisse t=\pm \cfrac{\sqrt{2}}{2}a
  • Determinare le pendenze delle rette tangenti al grafico di F in tali punti.

Prerequisiti

  • saper fare la derivata di una funzione fratta
  • studio di funzione completo
  • aver capito il concetto di derivata

Sviluppo

Primo punto

Riscrivo la F per facilitarmi la sua derivata:

F(t)=\cfrac{1}{\sqrt{t^{2}+a^{2}}}-\cfrac{1}{a}=\left ( t^{2}+a^{2} \right )^{-\frac{1}{2}}-\cfrac{1}{a}

F'(t)=-\frac{1}{2}\left ( t^{2}+a^{2} \right )^{-\frac{3}{2}}\cdot 2t

F'(t)=f(t)

inoltre F(0)=0

Secondo punto

Dominio è tutto \mathbb{R}

La funzione è pari, infatti:

F(t)=F(-t) quindi è simmetrica rispetto l’asse x.

Non vi sono asintoti orizzontali.

\underset{x\rightarrow+\infty}{lim}\cfrac{1}{\sqrt{ t^2+a^2 }}-\frac{1}{a}=-\frac{1}{a}

Vi è asintoto orizzontale in

y=-\frac{1}{a}

F'(t)=-\frac{1}{2}\left ( t^{2}+a^{2} \right )^{-\frac{3}{2}}\cdot 2t

e si annulla solo in t=0 che è proprio il punto di massimo osservando il segno della derivata prima.

Ecco il grafico della funzione:

Terzo punto

Faccio la derivata prima della derivata prima per determinare i flessi:

F'(t)=-\cfrac{t}{\sqrt{\left ( t^2+a^2 \right )^3}}=-t\cdot \left (t^2+a^2 \right )^{-\frac{3}{2}}

F''(t)=-\left (t^2+a^2 \right )^{-\frac{3}{2}}-t\cdot \left ( -\frac{3}{2} \right )\left (t^2+a^2 \right )^{-\frac{5}{2}}\cdot 2t=-\cfrac{1}{\sqrt{\left (t^2+a^2 \right )^3}}+\cfrac{3t^2}{\left (t^2+a^2 \right )^5}

F''(t)=\cfrac{-t^2-a^2+3t^2}{\left (t^2+a^2 \right )^5}

che si annulla proprio in:

t=\pm \cfrac{\sqrt{2}}{2}a

Quarto punto

E‘ sufficiente sostituire i valori dei flessi nella derivata prima:

f\left ( \cfrac{\sqrt{2}}{2}a \right )=\cdot \cdot \cdot =-\cfrac{2}{3a^2\sqrt{3}}

f\left (- \cfrac{\sqrt{2}}{2}a \right )=\cdot \cdot \cdot =\cfrac{2}{3a^2\sqrt{3}}

Dieser Beitrag wurde unter Senza categoria veröffentlicht. Setze ein Lesezeichen auf den Permalink.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert